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Executive Summary 

Artificial intelligence (AI) is an emerging technology with a dual-use character. Concerns have been raised 

that some of its applications in life sciences can be misused by nefarious actors for the development of 

biological and chemical weapons, prohibited by the Biological Weapons Convention (BWC), and the Chemical 

Weapons Convention (CWC). Areas of AI applications relevant to the BWC and CWC include rational drug 

design, retrosynthesis planning, and synthetic biology. Research in such areas might also unintentionally 

produce knowledge, products, or technologies that could be used by others to cause harm. 

  

Table 1: AI applications and misuse potential in rational drug design, retrosynthesis planning, synthetic 

biology 

 Applications Misuse scenarios Current limitations 

D
ru

g
 d

e
si

g
n

 

Determination and analysis of 

correlations in biological datasets to 

provide a list of pharmacologically 

promising biological targets; 

 

prediction of the native 3D structure of 

proteins based on the given amino acid 

sequence; 

 

modeling of potential drug candidates. 

May provide insight into the 

susceptibility of population or sub-

population groups to some diseases and 

identify genetic key elements for a 

disease manifestation;  

 

can be used for a de novo design of toxic 

compounds; 

 

can be applied to discover new proteins 

from random amino acid sequences, 

which might have toxic effects in the 

human body. 

Incomplete, insufficiently and inconsistently labeled 

data used for the algorithm training, as well as scarce or 

missing reporting of negative results in public literature 

limit the outcome of computational modeling; 

 

predicted molecules may be not synthesizable, stable, 

etc.; 

 

characterization of complex, highly dynamic molecular 

systems on a multilevel basis is not adequately captured 

by current mechanistic models;  

 

the correlations determined by the algorithm may be 

purely coincidental or erroneous;  

 

the software for modeling protein 3D structures is not 

designed to predict the effects of mutations on the 

native structure; 

 

predictions may fail in cases where proteins can adopt 

different conformations. 

R
e

tr
o

sy
n

th
e

si
s 

Design of retrosynthesis routes using 

freely available and commercial AI 

platforms;   

 

automatized synthesis by coupling 

software to robotic systems. 

May be misused to propose alternative 

retrosynthetic pathways for the 

compounds belonging to the category of 

chemical weapons. 

Publicly available chemical data is highly heterogeneous 

(e.g., different representations, structured, vs. 

unstructured), often incomplete, and sometimes 

contradictory;  

 

reported errors in retrosynthesis routes proposed by AI 

software include a lack of atom conservation and 

nonsensical chemical transformations;  

 

data on the reaction conditions available for the training 

of the AI algorithms are often incomplete in published 

literature. 

S
y

n
th

e
ti

c 
B

io
lo

g
y

 

Can drive the process of designing and 

fine-tuning the experiment, reducing 

the number of iterative Design-Build-

Test-Learn (DBTL)  cycles required; 

 

can be leveraged to analyze genomic 

data and to facilitate an understanding 

of the functional relationship between 

genome and phenotype manifestation.  

 

Might foster the design of microbial 

pathogens with enhanced 

pathogenicity, expanded host range, 

altered transmission routes, resistance 

to the available countermeasures, 

abilities to evade the immune system 

response, etc. 

AI automatization is in a developing stage due to the lack 

of standardization of hardware models, data flow, and 

representation; 

 

available datasets are oft incomplete in terms of 

recorded parameters, context-related information, 

uncertainty quantification, and evaluation of negative 

outcomes; 

 

standard AI evaluation metrics are inadequate for 

applications in synthetic biology, due to their 

incapability to capture the complexity and stochasticity 

of biological systems. 

Most of the current limitations in the AI field will likely be overcome in the near future with the emergence 

of more efficient algorithms and the increasing amount and accessibility of the reported data. The threat 

landscape is also shaped by the availability of a great number of open-source tools to develop the respective 

AI-based computational tools “from scratch”. Therefore, a comprehensive legally binding framework is 

required to regulate AI in the context of biosecurity. The current solutions such as e.g. “Proposal for a 

Regulation laying down harmonised rules on artificial intelligence” of the EU (“AI Act”) are not sufficient to 

adequately address the biosecurity risks posed by some of the AI applications in life sciences. Last but not 

least, AI itself can play a role in strengthening biosecurity by expediting the development of vaccines and 

antidotes, introducing and improving detection methods, and supporting the implementation of BWC and 

CWC. 
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1. Setting the scope 

 

We live in an era of technological advances and scientific breakthroughs. Improvements in medical 

diagnostics and treatment, more sustainable autonomous industrial processes, novel solutions for renewable 

energy, and powerful technical devices are just some of the achievements that can be attributed to the 

developments in life science and technology progressing at a high pace. However, some of these important 

milestones and insights have a two-sided character. They can be potentially misused by state or non-state 

actors for the development and production of biological or chemical weapons.  

In general, the production, development, and stockpiling of biological and chemical weapons 

are prohibited by several international agreements, such as the Biological Weapons 

Convention (BWC 1972), and the Chemical Weapons Convention (CWC, 1993).  

In contrast to the CWC, the BWC regime currently does not have established verification mechanisms, an 

effective scientific and technical review, or other means to keep the treaty regime abreast of relevant R&D 

advances. In the CWC regime, the Organization for the Prohibition of Chemical Weapons (OPCW)1, the 

implementing body of the CWC, is mandated to verify compliance with the provision of the CWC. The 

Scientific Advisory Board (SAB), a subsidiary body of OPCW, monitors the developments in scientific and 

technological fields that are relevant to the Convention.2 

 

Concerns have been raised that advances in some areas of science and technology are reducing technical 

barriers and enabling alternative ways to acquire, manufacture, and disseminate hazardous biological agents 

and toxic chemicals.  Of relevance is foremost scientific research which is conducted for solely peaceful 

purposes, but can potentially provide a toolbox for the production of warfare agents. In the life-science field, 

research with a specifically high misuse potential is referred to as dual-use research of concern (DURC).3 It is 

conceivable that the growing accessibility of dual-use technologies, the rapid cost reduction for their 

application, and the decreasing expertise required for their use make them potentially attractive to various 

groups of actors with malicious intents.4 

 

Numerous analytical working papers and academic publications are dedicated to the comprehensive 

discussion of the semantics (civilian vs military use; peaceful vs non-peaceful purposes), ethics (dilemma for 

scientists and other stakeholders), and regulatory framework of dual-use research.4-5 In principle, all 

disciplines in life sciences possess to some extent a dual-use character. However, some particular research 

areas are repeatedly cited in the vast majority of DURC-related publications due to their relevance in the 

context of the BWC and CWC regimes. They include synthetic biology, genetic engineering, nanotechnology, 

artificial intelligence, and additive manufacturing, to name just a few. These research areas are summarized 

under the umbrella term “emerging technologies”. The present working paper focuses on the discussion of 

artificial intelligence (AI) in life sciences, its current possibilities and limitations, and its implications for the 

BWC and the CWC.  

 

2. AI as an emerging technology 

 

There is no standardized definition of AI. According to the terminology adopted in the 2018 European 

Commission Communication6 AI refers to systems that display intelligent behavior by analyzing their  

 
1 OPCW: https://www.opcw.org (accessed 2023). 
2 Scientific Advisory Board: https://www.opcw.org/about/subsidiary-bodies/scientific-advisory-board (accessed 2023). 
3 National Research Council . Biotechnology research in an age of terrorism: Confronting the dual use dilemma. National 

Academy of Sciences, Washington, DC: The National Academies Press, (2004). 
4 National Academies of Sciences, Engineering, and Medicine, Dual Use Research of Concern in Life Sciences: Current 

Issues and Controversies. Washington (DC): National Academies Press, (2017). 
5 Miller S., Selgelid M.J. Ethical and philosophical consideration of the dual-use dilemma in the biological sciences. Sci. 

Eng. Ethics, 13(4), 523-580, (2007). 
6 European Commission: Artificial Intelligence for Europe, COM(2018), 237 final, April 2018, https://eur-

lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52018DC0237&from=EN (accessed 2023).  
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environment and acting – with some degree of autonomy – to achieve specific goals. The synonymical term 

is “weak AI” to distinguish it from the so-called “strong AI”, which is capable of self-controlled thinking and 

learning and belongs to the realms of highly speculative future developments.  

 

Currently, the subject of AI dominates many news article headlines, especially due to the growing popularity 

of some of its applications, such as the chatbot ChatGPT, which was developed by OpenAI and launched in 

November 2022. These developments might create the impression that this rapidly progressing research area 

has emerged only recently. However, the term “AI” was coined in 1956 by John McCarthy7, while the 

underlying concepts were introduced even earlier. The long development path of AI is characterized by 

numerous milestones with their contribution to the progression in the field. Essential prerequisites for 

contemporary successful AI development were the accessibility of large amounts of data (big data) and the 

availability of computing capacities for processing and storing them. The development in the field of AI is 

further promoted by diminishing computational costs and the availability of various open-source toolkits and 

libraries that are constantly emerging (TensorFlow, Scikit, OpenCV, PyTorch, Keras, etc.). The popularity of 

these software tools is reflected in the constantly growing number of their users.9  

 

The importance of high-quality data for efficient AI training cannot be underestimated. It is, in fact, the major 

bottleneck of the technology. Training and validating data sets need to be sufficiently large and 

representative8 to reduce bias and to optimize AI performance. This seemingly trivial requirement cannot 

always be easily fulfilled in reality: data availability can be restricted due to licensing policies, ethical and 

security considerations, and proprietary rights. This legitimate limitation has bearing on the central question 

of what is feasible with AI, and what is borderline. 

 

Since its beginnings in the 1950s, AI has gone through several phases of development marked by different 

achievements that made this technology indispensable in many areas of our everyday life: from mobile voice 

assistants and online search engines, to self-driven cars and autonomous vehicles, to sophisticated 

applications in medical diagnostics, chemical and material science, drug design, and robotics. 

The increasing number of AI-related publications and patents demonstrates the high impact of 

AI technology on different areas.  

As highlighted in the Artificial Intelligence Index Report 2022,9 the number of patents filed in 2021 is more 

than 30 times higher than in 2015 (a compound annual growth rate of 76.9%), and the total number of AI 

publications doubled in the last decade, with the overall number of worldwide AI publications exceeding 

334.000 (status: 2021).9 Progress in AI rests on the pillars of various converging disciplines including 

engineering, mathematics, data processing, neurosciences, linguistics, physiology, medicine, chemistry, 

biology, etc.  

 

The bibliometric analysis by Karger et al.10 for the period from 1991 to 2022 revealed that the spectrum of 

publications in which AI/machine learning/deep learning was relevant, covers over 26 research areas, which 

demonstrates the influence of these computing systems. Areas, in which AI technology has been extensively 

applied lately:  

 Biochemistry, Genetics, and Molecular Biology 

 Computer Science 

 Pharmacology, Toxicology, and Pharmaceutics 

 Chemistry 

 Medicine 

 
7Russell S.J, Norvig P. Artificial Intelligence: A Modern Approach. Pearson series in artificial intelligence. Pearson 

education limited., (2020). 
8 Boucher P., Artificial intelligence: How does it work, why does it matter, and what can we do about it? EPRS: European 

Parliamentary Research Service. Belgium, (2020). 
9 Zhang D., Maslej N., Brynjolfsson E., et al. The AI Index 2022 Annual Report, AI Index Steering Committee, Stanford 

Institute for Human-Centered AI, Stanford University, March (2022). 
10 Karger E., Kureljusic M. Using Artificial Intelligence for Drug Discovery: A Bibliometric Study and Future Research 

Agenda. Pharmaceuticals, 15(12), 1492, 1-22, (2022). 
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This indicates the important role of AI in life sciences. The above-mentioned aspects underpin the 

classification of AI as an emerging technology. The term “emerging technology” has a range of definitions 

depending on the context, e.g., management, IT, science & technology policy, economics, etc.11 However, 

some commonly used criteria for categorizing technology as “emerging” are a strong impact across a range 

of sectors of the economy and society,12-13 movement beyond the purely conceptual stage,12 novelty, and 

growth.14 The term “novelty” in the context of AI does not refer to its historical timeline, but rather to its 

ever-evolving manifold applications.  

 

AI progresses at high speed and starts shaping many areas of research and industry. Given the rapid spreading 

of this technology, ethical and security concerns related to some of its applications should be analyzed in 

detail to reduce any possible harm to society or individual vulnerable groups. Here we focus on some selected 

examples of AI applications in life sciences relevant to the context of the BWC and CWC regimes. 

 

3. Rational drug design 

 

Pharmacology and biochemistry are currently thriving with large datasets: information from genomics, 

proteomics, and metabolomics (“omics”) together with the results from toxicology and physiology represent 

an intricate landscape of data on potential drug targets. Nevertheless, identifying a drug target (a biological 

entity in our body interacting with therapeutics to produce a physiological response) for the development of 

a high-demand efficient drug based on this wealth of information is as challenging as looking for the 

proverbial needle in the haystack. Machine learning can be applied to tackle these challenges: algorithms 

have been developed to determine and predict correlations in biological datasets to provide a list of 

pharmacologically promising biological targets.  

More than half of the human proteome has a link to any disease but has not been studied for 

binding to small molecules, while 38% of the entire proteome remains unstudied.15 AI 

technology can steer the forward movement in this information space. 

In general, the rational drug design process consists of several consecutive key steps schematically depicted 

in Figure 1, each with its own set of challenges and particularities. 

 
 

 

 

 

 

Figure 1: Schematic representation of the drug discovery process. The first steps up to clinical testing can be 

supported by an AI-driven application.  

 

The heart of every drug discovery process is the identification of a molecular component that interacts with 

the biological target (e.g. a receptor) in a desired manner. This oversimplified description implies a meticulous 

search for an entity, which would meet a long catalog of criteria (safety, efficiency, bioavailability, etc), 

progressing from  an initial “hit” to the subsequent promising (“lead”) component, which upon further 

optimization would  

 
11 Rotolo D., Hicks D., Martin B.R. What is an emerging technology? Res. Policy, 44(10), 1827-1843, 2015. 
12 Stahl B.C. What does the future hold? A critical view on emerging information and communication technologies and 

their social consequences. In Chiasson M., Henfridsson O., Karsten H., DeGross J.I., editors, Researching the Future in 

Information Systems: IFIP WG 8.2 Working Conference, Future IS 2011, Turku, Finland, Proceedings, 59–76, Springer, 

Heidelberg (2011). 
13 Martin B.R. Foresight in science and technology. Technol. Anal. Strateg. Manag., 7(2), 139–168, (1995). 
14 Small H., Boyack K.W., Klavans R. Identifying emerging topics in science and technology. Res. Policy, 43(8), 1450–1467, 

(2014). 
15 Doytchinova I. Drug Design-Past, Present, Future. Molecules, 27(5):1496, 1-9, (2022). 
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enter the preclinical/clinical testing phase. For the past two decades, the process of lead discovery was 

facilitated by the high-throughput screening (HTS) methods with estimated hit rates of 0-0.01%.16-17 

Leveraging AI in this field opens up the possibility of generating new chemical entities from scratch without 

the necessity of performing HTS.17  

 

Not all potential protein targets and protein-based therapeutics have available structural information for the 

characterization of molecular interactions. AI tools for the prediction of the native protein 3D structure such 

as nRoseTTAFold18 can provide the first guess of the respective structure to guide further research. Another 

deep learning approach, AlphaFold, has attracted substantial attention due to its accurate predictions of 

protein 3D structures from the given amino acid sequence.19 The open-access database of predicted protein 

structure hosted by the AlphaFold developers DeepMind and EMBL-EBI includes as of now over 200 million 

proteins, “almost every protein known to science”20. In comparison, experimentally-derived data collected in 

the protein database PDB currently encompasses over 200 thousand structures.21  

 

The process from the design to the market introduction of the finished product takes over 10-15 years, and 

the average costs of drug development are assumed to be about $1-2 billion.22 Undeniably, the leverage of 

AI in drug discovery is highly beneficial and promising in terms of time and cost reduction. 

 On the other hand, concerns have been raised that this technology can be misused for the 

targeted development of novel biochemical weapons, given the huge amount of scientific data 

and computational tools which can be exploited to implement an AI-based prediction model 

for tailored toxic substances.  

Considering the fast progress and dynamic changes in the field of AI-driven drug discovery, these concerns 

have a solid foundation and require a scrutinized assessment. Thus, machine learning-based correlation 

analysis can potentially convey information on hitherto unstudied biological targets in the human organism 

involved in crucial physiological cascades, which can be efficiently deregulated to cause severe or even lethal 

effects. Additionally, genomic data mining might provide insight into vulnerabilities of population or sub-

population groups in the form of susceptibility to some diseases, and identify genetic key elements for a 

disease manifestation (a goal usually pursued in the search for novel therapies, which can be misused for 

malicious purposes). However, the predicted biochemical relationships will still have to be verified 

experimentally.  

 

It is a ubiquitous phenomenon that complex technologies are also associated with risks from possible misuse 

for military or criminal purposes. A recent misuse scenario for AI-guided drug design has raised concerns 

among the general public and scientific communities. As demonstrated by Urbina et al., AI technology can be 

exploited for the de novo design of highly toxic chemicals.23 In a proof-of-principle study, Urbina et al. altered 

their commercial machine-learning software for the modeling of toxic entities, exploring the chemical space 

around the known nerve agent VX.23 This computational approach resulted in a list of 40,000 molecules, 

including novel compounds with a predicted in vivo toxicity higher than of the known chemical warfare 

 
16 Bender A., Bojanik D., Davies J.W., et al. Which aspects of HTS are empirically correlated with downstream success? 

Curr. Opin. Drug Discov. Devel., 11, 327–337, (2008). 
17 Schneider P., Walters W.P., Plowright A.T., et al. Rethinking drug design in the artificial intelligence era. Nat. Rev. Drug 

Discov., 19(5), 353-364, (2020). 
18 Baek M., DiMaio F., Anishchenko I., et al. Accurate prediction of protein structures and interactions using a three-track 

neural network. Science, 373(6557), 871-876, (2021). 
19 Jumper J., Evans R., Pritzel A., et al. Highly accurate protein structure prediction with AlphaFold. Nature, 596, 583–589 

(2021). 
20 Heikkilä M. MIT Technology Review : DeepMind has predicted the structure of almost every protein known to science 

https://www.technologyreview.com/2022/07/28/1056510/deepmind-predicted-the-structure-of-almost-every-protein-

known-to-science/ July, 2022 (accessed 2023). 
21 Protein Data Bank (PDB): https://www.rcsb.org/ (accessed 2023). 
22 Sun D., Gao W., Hu H.,et al. Why 90% of clinical drug development fails and how to improve it? Acta Pharm. Sin. B. 

12(7), 3049-3062, (2022). 
23 Urbina F., Lentzos F., Invernizzi C., et al. Dual use of artificial-intelligence-powered drug discovery. Nat. Mach. Intell. 4, 

189–191 (2022). 
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agents. This illustrates that AI can be potentially applied by actors with malicious intents to explore the area 

of new highly potent biochemical weapons.  

AI-based software can be used not only for a de novo design of small molecules but also for 

macromolecules, potentially enlarging the arsenal of biochemical substances which can be 

explored by nefarious actors.  

In principle, the novelty of such chemicals might slow down their identification and the initiation of the 

required countermeasures. Furthermore, AI technology can be misused not only for the modeling of novel 

lethal warfare agents but also for the design of their subsequent synthesis. Some of the capabilities and 

limitations of machine learning-driven retrosynthesis platforms are discussed in Section 4 and will not be 

analyzed here.  

 

Further misuse potential of AI in drug discovery is related to computational structure predictions. If the 

structural information on the biological target or the interacting molecular entity cannot be retrieved from 

e.g. PDB database, it can be predicted using efficient AI modeling tools, such as the freely available AlphaFold 

or RoseTTAFold, provided that the amino acid of the protein is known. This software can even be applied to 

discover entirely new proteins as shown by Anishchenko et al.24, who used deep neural networks (category 

of machine learning algorithms) to design (“hallucinate”) new proteins starting from a random sequence of 

amino acids. A portion of 129 “hallucinated” proteins was expressed in bacteria E. coli, resulting in 27 proteins 

with recorded experimental spectra consistent with the modeled structures. The experimental structure 

determination of the three of these species revealed a close match with the prediction. This highlights the 

current predictive power of AI-based computational tools which is expected to increase further, once more 

high-quality research data flows into the algorithm training.  

 

A critical validation of the achievements and limitations of AI applications is required to set the scope for 

current biosecurity issues and to identify the key points, which will gain relevance in the near future. Here, 

we will address the current limitations of computer-aided drug design, bearing in mind that the same issues 

are of relevance in the discussion of AI misuse potential for a de-novo synthesis of hazardous molecular 

compounds. It’s still early days for this target-identification technique.25 One of the challenges is e.g. the 

analysis of omics data. Many of the established AI algorithms are not robust enough for the analysis of these 

datasets due to the inherent difference between such data and other types of information (e.g. text data), 

for which these algorithms are designed and applied.26  The main difference is the context dependence of the 

omics data, which makes it challenging to extract meaningful information via data extrapolation.26 The 

characterization of complex, highly dynamic molecular systems on a multilevel basis (e.g. genome vs 

proteome) is not adequately captured by current mechanistic models. Predictive modeling is further 

hampered by the tendency of algorithms to determine correlations, some of which may be purely 

coincidental or erroneous.27 Furthermore, the collected omics data often lack important information such as 

proper labeling of recorded parameters, the context of the sampling, and time resolution necessary to 

comprehend the dynamic changes in the living. As demonstrated by Buescher et al., the integration of 

multiple omics datasets to understand their crosstalk is more than the sum of the individual experiments.28 

This significantly affects the applicability of the AI algorithms and their reliability, when it comes to 

constructing models and predicting properties based on the data extracted from such datasets. 

 

 

 

 
24 Anishchenko I., Pellock S.J., Chidyausiku T.M., et al. De novo protein design by deep network hallucination. Nature, 600, 

547–552 (2021). 
25 Heaven W.D. MIT Technology Review: AI is dreaming up drugs that no one has ever seen. Now we’ve got to see if they 

work. February 2023 https://www.technologyreview.com/2023/02/15/1067904/ai-automation-drug-development/ ( 

accessed 2023). 
26 Eslami M., Adler A., Caceres R.S., et al. Artificial intelligence for synthetic biology. Commun. ACM. 65(5). 88-97, (2022). 
27 Yeo H.C., Selvarajoo K. Machine learning alternative to systems biology should not solely depend on data. Brief 

Bioinform., 23(6):bbac436, 1-6, (2022). 
28 Buescher J.M., Driggers E.M. Integration of omics: more than the sum of its parts. Cancer Metab., 4(4), 1-8, (2016). 
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Limitations are also known concerning the performance of machine learning software for predicting protein 

3D structures. Thus, the AlphaFold algorithm is not designed to predict the effects of mutations on the native 

structure. Prediction is also made on the assumption of a protein “in a vacuum”: a molecular entity not 

interacting with other complex-building proteins (although some progress in this aspect has been made 

recently29) or with compounds (“ligands”), which upon binding induce a conformational change in the 

respective protein. Giving accurate predictions for proteins with a single well-defined 3D structure, the 

algorithm may fail in cases where proteins “can adopt different structures in different conformations”30. 

Examples of structural predictions by the software, which could not be verified experimentally have been 

reported.30 In one of these cases the modeled structures of the members of the so-called G-protein coupled 

receptors, which are important for signal transduction into the cell, were incorrect according to the 

experimental data despite the high confidence of the algorithm in the accuracy of the prediction.30 This 

demonstrates that the results obtained with the artificial neural networks cannot be viewed as a substitute 

for experimental work and expert knowledge, but rather as an approximation complementing the existing 

experimental methods. 

The major limitation in the field of AI-based drug discovery remains the quality of available 

chemical datasets for algorithm training, the key aspect of AI efficacy. 

The available amount of results from the in vivo experiments is limited. Training data sets therefore 

predominantly contain in vitro results. Since the in vitro conditions do not entirely resemble the in vivo 

situation, the prediction efficiency and the feasibility of the results obtained are reduced. Also, the animal 

model data has limited transferability regarding drug metabolism in the human body.  

 

Further limitations concerning the available datasets are: 

 incomplete, insufficiently, and inconsistently labeled data 

 scarce or no reporting of negative results 

 limited number and low heterogeneity of the molecules to create a predictive model.17 

This observation has implications for whether AI would indeed be at the current stage the game-changer for 

actors with malicious intent.  

 

Computational modeling of a structure and its chemical and physiological properties alone do not necessarily 

imply that the component is synthesizable and will interact in the body in a predicted manner.  

Synthesizability is one of the issues known in the context of AI-based de novo molecular design.31 Also, 

considerations concerning its stability and the transportation routes within the body will not be rendered 

obsolete by AI. These aspects still require deep expertise in the field. As stated by the CEO of one of the 

California-based drug companies: “If somebody tells you they can perfectly predict which drug molecule can 

get through the gut or not get broken up by the liver, things like that, they probably also have land to sell you 

on Mars”25. This is maybe the reason why AI has not yet led to an expected breakthrough in pharmacology. 

A survey of selected drug discovery companies using AI shows that only a fraction of publicly disclosed drug 

candidates progressed into clinical trials, despite a large number of programs in the preclinical stage in 2010-

2021.32 That said, this aspect should be viewed critically in terms of the misuse potential of AI technology 

since the requirements for a compound developed for non-peaceful purposes differ from those of the pharma 

industry. A high toxicity profile, one of the reasons for the failure of the drug candidates in early clinical 

testing, is a property desirable for a novel chemical weapon component. An AI algorithm can be designed (or 

modified) to search for the components with the highest predicted toxicity, as shown in the previously 

mentioned study by Urbina et al.23 Still, as emphasized above, the question remains, whether the predicted 

molecules will be synthesizable, stable, volatile, etc., which were not further assessed by Urbina et al.  

 

 
29 Evans R., O'Neill M., Pritzel A., et al. Protein complex prediction with AlphaFold-Multimer. bioRxiv 10.04.463034, 1-25, 

(2021). 
30 Callaway E. What's next for AlphaFold and the AI protein-folding revolution. Nature, 604, 234-238, (2022). 
31 Gao W., Coley C. W. The Synthesizability of Molecules Proposed by Generative Models. J. Chem. Inf. Model., 60, 15714–

5723, (2020). 
32 Jayatunga M.K.P., Xie W., Ruder L., et al. AI in small-molecule drug discovery: a coming wave? Nat. Rev. Drug Discov., 

21(3), 175-176, (2022). 
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4. Retrosynthesis planning 

 

Once the molecule with the desired properties has been determined, the next crucial step is to plan the 

optimal retrosynthesis strategy, i.e. to find recursively the synthetic pathway to obtain the compound of 

interest from readily available consumables (Figure 2). This is not a straightforward task, in particular for 

complex multi-step reactions. Recently, AI-based solutions have been increasingly gaining attention as a tool 

to automatize this intricate process.  

 

 

 

 

 

Figure 2: Simplified representation of a retrosynthesis pathway. 

 

The first attempts in the area of computer-aided synthesis planning have been undertaken in the 1960s.33 

However, the field has flourished only recently, partly due to the aforementioned improvements in data 

storage and processing and the growing amount of scientific data. This data has been collected in publicly 

available and commercial databases. Some of them are summarized in Table 2, also the list is far from 

exhaustive. Further open-access chemical reaction databases are currently under development.34-35 

Commercial AI implementations for retrosynthesis design and planning have largely found their way into daily 

chemical laboratory practice. Reaxys synthesis planning36, CAS SciFinder37, and ChemAIRS38 are some of the 

commonly used ones. In addition to potential synthesis routes, information on required reaction conditions 

and even on the pricing of the necessary compounds may be provided by the software. Results of a recently 

conducted Turing-like test (to access if a computer responds in a human-like manner39) show that some of 

the retrosynthesis routes proposed by AI are largely indistinguishable from those that would be designed by 

human experts.40 

Many freely available and commercial platforms have been developed for tailored 

retrosynthesis planning. Some solutions for coupling this software to robotic systems for a 

fully automatized synthesis process have also been presented. 

 One such example is the open-source software ASKCOS, trained on the data from USPTO (US Patent and 

Trademark Office)41 and Reaxys. The synthetic route proposed by the algorithm is subsequently validated by 

a chemist, who also configures the required operations for the robot arm to perform the synthesis.42 Another 

popular open-source software is AiZynthFinder43, which utilizes different multi-step search algorithms to 

increase efficiency. Also, the AI-driven tool RXN developed by IBN is an online platform for both forward 

reactions and retrosynthesis planning. The obtained results can be used in combination with another part of 

the toolset, RoboRXN, “the first remotely accessible, autonomous chemical laboratory”44. 
 

 
33 Corey E.J., Wipke W.T. Computer-Assisted Design of Complex Organic Syntheses. Science, 166(3902), 178–192 (1969). 
34 Tavakoli M., Chiu Y.T.T, Baldi P., et al. RMechDB: A Public Database of Elementary Radical Reaction Steps. J. Chem. Inf. 

Model. 63(4), 1114-1123, (2023). 
35 Kearnes S.M., Maser M.R., Wleklinski M., et al. The Open Reaction Database. J. Am. Chem. Soc. 143(45), 18820–18826, 

(2021). 
36 Reaxys https://www.elsevier.com/solutions/reaxys (accessed 2023). 
37 CAS SciFinder https://www.cas.org/solutions/cas-scifinder-discovery-platform/cas-scifinder (accessed 2023). 
38 ChemAIRS https://chemairs.chemical.ai/ (accessed 2023). 
39 Turing, A.M. I.—computing machinery and intelligence. Mind, LIX(236), 433–460, (1950). 
40 Mikulak-Klucznik B., Gołębiowska P., Bayly A.A., et al. Computational planning of the synthesis of complex natural 

products. Nature, 588, 83–88 (2020). 
41 United States Patent and Trademark Office  https://www.uspto.gov/ (accessed 2023). 
42 Coley, C.W., Thomas D.A., Lummiss J.A.M., et al. A robotic platform for flow synthesis of organic compounds informed 

by AI planning. Science 365 (6453), 1-9, (2019). 
43 Genheden S., Thakkar A., Chadimová V., et al. AiZynthFinder: a fast, robust and flexible open-source software for 

retrosynthetic planning. J. Cheminformatics. 12(1), 1-9, (2020). 
44 RNX for chemistry https://rxn.res.ibm.com/ (accessed 2023). 
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Table 2: Some of the open-source and commercial databases for chemical reactions and compounds. 
Open-source databases 

Name Data amount 

United States Patent and Trademark 

Office (USPTO)-derived data 

>1.9 million reactions (1976-2016)45-46 

ChemSpyder  

&ChemSpyder synthetic pages 

>100 million structures47 

ZINC >230 million commercially available compounds48 

ChEMBL 2.4 million  distinct components49 

PubChem 115 million unique chemical structures50 

Commercial databases 

Reaxys® >57 million chemical reaction entries36  

> 170 million compounds 

CAS® SciFinder > 150 million single- and multistep reactions37 

Pistachio 13.3 million reactions51-52 

 

The question, which arises in this context, is biosecurity-related: can these beneficial tools be misused to 

propose retrosynthetic routes for the compounds belonging to the category of chemical weapons? The 

respective substances together with their precursors and derivatives are listed in Schedules 1-3 of the “Annex 

on Chemicals”53 provided by the OPCW. Facilities that produce (1-3), process (2), or consume (2) these 

scheduled chemicals must be declared and can be subjected to regular inspections conducted by the OPCW 

according to the Parts VI-VIII of the “Verification Annex”.53 On a national level, law enforcement units ensure 

that no illegal purchase, production, or stockpiling of such compounds occurs within the country following 

the provisions of the CWC. There is a concern that technologies such as AI-driven retrosynthesis tools may be 

used to circumvent the implemented security measures and determine alternative synthetic routes without 

involving regulated and monitored chemicals. 

 

Undoubtfully, as discussed above, modern AI-based software has great potential. Given a large amount of 

available data from various sources, such software can develop synthesis routes not published in literature 

based on pattern recognition and correlation analysis.  

Even if currently available software (free or commercial) would be equipped with security-

related restrictions to undermine its misuse by somebody with malicious intent, it does not 

diminish the risk, since such software can be programmed by everybody with sufficient expert 

knowledge.  

The last aspect is highlighted by the availability of the aforementioned open-source libraries for the 

development of such programs (Section 2). Nevertheless, a careful risk assessment requires not only the 

characterization of possibilities of the considered technology but also the evaluation of its limitations.45 As in 

the case of AI used in drug design, the restricting factors in the AI performance for retrosynthesis remain the 

currently available datasets used for the model training. This aspect can be seen as a generally valid point 

that makes the difference between the hype around AI and the reality of now. Arguably, a large body of 

literature has been accumulated over the years on different reaction mechanisms and synthetic pathways 

which can be used to retrieve information on the synthesis and the components involved and to train the 

machine learning algorithms.  

 
45 Lowe, D.M. Extraction of chemicalstructures and reactions from the literature. Ph.D. thesis, University of Cambridge, 

(2012). 
46 Zhong Z., Song J., Feng Z., et al. Recent advances in artificial intelligence for retrosynthesis. 10.48550/arXiv.2301.05864 

(2023). 
47 ChemSpyder http://www.chemspider.com/Default.aspx (accessed 2023). 
48 ZINC https://zinc15.docking.org/ (accessed 2023). 
49 ChEMBL https://www.ebi.ac.uk/chembl/ (accessed 2023). 
50 PubChem https://pubchem.ncbi.nlm.nih.gov/ (accessed 2023). 
51 Mayfield J., Lagerstedt I., Sayle R. Pistachio Fantastic reactions and how to use them. NIH Virtual Workshop on Reaction 

Informatics, May (2021). 
52 NextWove Software. Pistaccio https://www.nextmovesoftware.com/pistachio.html (accessed 2023). 
53 OPCW. Annexes https://www.opcw.org/chemical-weapons-convention/annexes (accessed 2023). 
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However, publicly available chemical data is highly heterogeneous (e.g., different representations, 

structured, vs. unstructured), often incomplete, and sometimes contradictory. A recent analysis of over 

125.000 pharmaceutical patents from 1976–2015 revealed a lack of essential information including e.g. 

reaction types or obtained product yields in a large portion of the documents examined.54-55 Furthermore, a 

survey of over 1 million applied reactions showed little diversity in the reaction mechanisms, with a biased 

preference for some particular methods.55 This limits the scope of chemical data, on which an AI algorithm 

can be trained to propose a novel (alternative) synthesis route. Datasets usually contain only successful 

reactions, excluding the failed ones, which are also required for efficient machine learning. All these aspects 

can lead to poor performance of an AI-based retrosynthesis planning platform, in particular for very specific 

reactions. Reported errors in AI-guided retrosynthesis include a lack of atom conservation and nonsensical 

chemical transformations.56 These challenges pose limitations to both the AI algorithms used for benign and 

non-peaceful purposes. 

 

In principle, breaking down the regulated components until non-regulated commercially available reagents 

remain for the synthesis implies creating large and cumbersome synthetic routes. The longer such predicted 

routes, the lower the prediction confidence level, which might result in chemically implausible and unfeasible 

pathways. Moreover, the recipe for a successful retrosynthesis consists of more than listing the required 

synthesis steps. Additional information on reaction conditions, solvents, catalysts, and concentrations is 

indispensable. As mentioned above, some software currently available does provide information on these 

parameters. Still, data on the reaction conditions are often incomplete in published literature, limiting also 

their predictability by the software. Although examples of the accurate prediction of reaction conditions with 

AI have been reported57-58, a critical study evaluates some of these results as “an overoptimistic 

interpretation”.59 

 The study by Beker et al. shows that an abundance of carefully curated literature data may be 

insufficient for accurate models of chemical reactivity.59 Based on the selected example of 

cross-coupling reactions, they demonstrate that, despite the large database used for machine 

learning, no meaningful prediction of optimal reaction conditions could be obtained.59  

These are just a few caveats in the chemical context of the question at hand. As a consequence, no study so 

far has reported a novel synthetic route provided entirely by AI and synthesized in the laboratory or industrial 

setting.46 

 

5. Synthetic biology 

 

Synthetic biology is a synergy of biology and engineering principles that nowadays transforms a vast number 

of sectors including medicine, drug discovery, food industry, energy research, and material science.  

Advanced applications of synthetic biology enable the building of molecular blocks and circuits from 

standardized biological parts60; the construction of artificial biological systems from synthetic genomes61; the  

 
54 Schneider N., Lowe D. M., Sayle R.A., et al. Big data from pharmaceutical patents: A computational analysis of medicinal 

chemists’ bread and butter. J. Med. Chem., 59(9), 4385–4402 (2016). 
55 Almeida A.F., Moreira R., Rodrigues T., Synthetic organic chemistry driven by artificial intelligence. Nature Rev. Chem., 

3, 589-604 (2019).  
56 Borrelli W., Schrier J. Evaluating the Performance of a Transformer-based Organic Reaction Prediction Model. 

ChemRxiv., 3nqv9, (2021). 
57 Gao H., Struble T.J., Coley C.W., et al. Using Machine Learning to Predict Suitable Conditions for Organic Reactions. ACS 

Cent. Sci., 4(11), 1465−1476, (2018). 
58 Maser M.R., Cui A.Y., Ryo, S., et al. Multilabel Classification Models for the Prediction of Cross-Coupling Reaction 

Conditions. J. Chem. Inf. Model., 61(1), 156−166, (2021). 
59 Beker W., Roszak R., Wołos A., et al. Machine learning may sometimes simply capture literature popularity trends: A 

case study of heterocyclic Suzuki-Miyaura coupling. J. Am. Chem. Soc., 144 (11), 4819-4827 (2022). 
60 Knight T. Idempotent Vector Design for Standard Assembly of BioBricks. MIT Artificial Intelligence Laboratory; MIT 

Synthetic Biology Working Group, (2003). 
61 Venter J.C., Glass J.I., Hutchison C.A., et al. Synthetic chromosomes, genomes, viruses, and cells. Cell 185(15). 2708-

2724, (2022). 
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engineering of microorganisms for the production of desired compounds62; the manufacturing of novel 

vaccines, diagnostics, and therapeutics63; the expansion of the genetic code to reprogram the native cell 

translation machinery64, etc. Precise DNA manipulation is possible with the CRISPR/Cas9 systems, the so-

called “genetic scissors”.65 This method has been applied to edit the genomes of various organisms, including 

bacteria and viruses. Many controversial applications of synthetic biology have sparked debates about dual 

use and biosecurity, which are beyond the scope of this manuscript.  

 

The experimental procedure in synthetic biology is a sequential iterative process that undergoes the phases 

of design, implementation, testing, and review of results and failures, referred to as the Design-Build-Test-

Learn (DBTL) cycle. AI applications can drive the process of designing and fine-tuning the experiment, 

reducing the number of iterative cycles required.26 Neural network models have been e.g. used to design new 

biological constructs66, determine plasmid expression, optimize nutrition and fermentation conditions, and 

predict CRISPR guide efficacy.26 Additionally, they can be leveraged to analyze genomic data and to facilitate 

an understanding of the functional relationship between genome and phenotype manifestation.  

Despite their promising applications at the frontiers of molecular biology, such AI-driven 

approaches raise biosecurity concerns. They might foster the design of microbial pathogens 

with enhanced pathogenicity, expanded host range, altered transmission routes, resistance to 

the available countermeasures, abilities to evade the immune system response, etc.67-68  

Machine learning has been e.g. used to improve the production fitness of adeno-associated virus (AAV), a 

vector used in gene therapy69, detect novel pathogens from the next-generation sequencing data70, predict 

pathogenic potentials for unknown, unrecognized, and novel (e.g. synthetic) DNA sequences.71 Also, AI-based 

structure predictions such as e.g. AlphaFold 2 or RoseTTAFold can be exploited in the effort to generate 

infectious viruses from synthetic DNA or enhance known pathogens.72 According to the developers of 

AlphaFold 2, the viral proteins have been excluded from the openly available version of AlphaFold.73 However, 

the availability of the source code and respective datasets for the training of the algorithm questions the 

effectiveness of such precautions.  

 

Computational modeling, however advanced, does not replace experimental endeavor and expertise still 

required to implement and test the model. Nonetheless, the ongoing automatization of DBTL cycles 

promoted by the convergence of AI and robotics can lower the know-how threshold and make the technology 

more accessible, also to nefarious actors.  

 
62 Chubukov V., Mukhopadhyay A., Petzold C.J., et al. Synthetic and systems biology for microbial production of 

commodity chemicals. npj Syst. Biol. Appl. 2(16009), 1-11, (2016). 
63 Tan X., Letendre J.H., Collins J.J.,et al. Synthetic biology in the clinic: engineering vaccines, diagnostics, and therapeutics. 

Cell, 184(4), 881-898, (2021). 
64 Shandell M.A., Tan Z., Cornish V.W. Genetic Code Expansion: A Brief History and Perspective. Biochemistry, 60(46), 

3455-3469, (2021). 
65 Doudna J.A., Charpentier E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science, 

346(6213), (2014). 
66 Eastman P., Shi J., Ramsundar B., et al. Solving the RNA design problem with reinforcement learning. PLoS Comput. 

Biol., 14(6), 1-15 (2018).  
67 Brockmann K, Bauer S, Boulanin V. BIO PLUS X: Arms Control and the Convergence of Biology and Emerging 

Technologies. Solna, Sweden: Stockholm International Peace Research Institute, (2019). 
68 O'Brien J.T., Nelson C. Assessing the Risks Posed by the Convergence of Artificial Intelligence and Biotechnology. Health 

Secur., 18(3), 219-227, (2020). 
69 Mikos G., Chen W., Suh J. Machine learning identification of capsid mutations to improve AAV Production Fitness. 

bioRxiv,. 1-10, (2021). 
70 Deneke C., Rentzsch R., Renard B.Y. PaPrBaG: a machine learning approach for the detection of novel pathogens from 

NGS data. Sci Rep., 7(39194), 1-13, (2017). 
71 Bartoszewicz J.M., Seidel A., Rentzsch R., et al. DeePaC: predicting pathogenic potential of novel DNA with 

reversecomplement neural networks. Bioinformatics, 36(1), 81-89, (2020). 
72 Sandbrink, J.B., Alley, E.C., Watson, M.C. et al. Insidious Insights: Implications of viral vector engineering for pathogen 

enhancement. Gene Ther., 30, 407-410,  (2022). 
73 Perrigo B. Google’s AI Lab, DeepMind, Offers ‘Gift to Humanity’ with Protein Structure Solution, Time, July 2022, 

https://time.com/6201423/deepmind-alphafold-proteins/ (accessed 2023). 
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Experts in the field envision the development of fully-automated self-driven labs to process data, formulate 

hypotheses and theories and verify them experimentally.74 An already existing closed-loop robotic system 

can for instance design and perform experiments to determine gene functions.75 The technology is currently 

in a developing stage due to the lack of standardization of hardware models, data flow and representation, 

and intelligent experiment-selection algorithms.76  

Further advances in the field should be monitored concerning biosecurity, especially with the 

increasing emergence of the so-called cloud labs. These remote automated workstations 

promise to improve experimental reproducibility and provide affordable access to 

sophisticated equipment but can also open a new avenue for misuse.77 Currently, no active 

measures are implemented by the providers of such platforms to guard against exploitation 

for non-peaceful purposes.78 

Careful monitoring of the technology readiness level is required to assess possible biosecurity threats from 

AI applications in synthetic biology. Some general drawbacks, such as the completeness of available datasets 

in terms of recorded parameters, context-related information, uncertainty quantification, reliability, 

evaluation of negative outcomes, etc., listed in previous sections also pose limitations on the modeling 

capabilities of AI in the field of synthetic biology. The limitations of current algorithms in the interpretability 

of genetic data (omics) were briefly addressed in Section 3. Also, the difficulty of codifying expert/tacit 

knowledge paramount for a successful experiment in life sciences widens the gap between the computational 

prediction and the experimental result.  

 

Another technological challenge with a high impact on computational results for both peaceful science and 

biosecurity-violating projects are the AI evaluation metrics. Standard AI evaluation metrics are inadequate 

for applications in synthetic biology, due to their incapability to capture the complexity and stochasticity of 

biological systems.26 Nevertheless, these obstacles may be overcome in the near future through the 

development of more sophisticated algorithms and evaluation metrics, driven by huge investments in the 

synthetic biology sector. These considerations urge the need for a biosecurity framework for AI and robotics 

and an open dialogue and awareness raising among academia and industry stakeholders.  

 

6. AI and disinformation  

 

So far, we have focused on a few selected AI applications in life sciences relevant to the BWC and CWC without 

covering the full spectrum of this broad field. However, AI is rapidly gaining access in different civilian and 

military sectors. Other research areas can also have implications for these arms controls and beyond. 

Developments in AI technology relevant to the context of cybersecurity, autonomous weapons, and drones 

will not be further explored within the scope of this paper. Nevertheless, it should be noted that they 

significantly expand the threat landscape.  

 

A less-noticed realm where AI can be misused for hazardous purposes is disinformation spreading. Intentional 

disinformation campaigns can have deteriorating effects on the norms against chemical and biological 

weapons. As reflected in one of the previous project publications by Jakob et al., “false allegations of 

development, possession, and use of weapons of mass destruction can create perceptions that the taboos 

against biological, chemical and nuclear weapons no longer hold”79. Disinformation campaigns can be 

launched to trigger propaganda, false flag operations, or tarnish/damage the reputation of institutions such  

as the OPCW.  

 
74 Martin H.G., Radivojevic T., Zucker J., et al. Perspectives for self-driving labs in synthetic biology, Curr. Opin. Biotechnol., 

79, 1-15, (2023). 
75 King, R., Whelan, K.E., Jones, F.M., et al. Functional genomic hypothesis generation and experimentation by a robot 

scientist. Nature 427, 247–252 (2004). 
76 Abolhasani M., Kumacheva E. The rise of self-driving labs in chemical and materials sciences. Nat. Synth., 2, 483-492, 

(2023). 
77 Lentzos F., Invernizzi C. Laboratories in the cloud. Bull. At. Sci. 2019 (accessed 2023). 
78 Arnold C. Cloud labs: where robots do the research. Nature 606, 612-613 (2022). 
79 Jakob U., Jeremias G., Kelle A., et al. PRIF BLOG: Russian allegations of biological weapons activities in Ukraine. Mai 

2022, https://blog.prif.org/2022/03/22/russian-allegations-of-biological-weapons-activities-in-ukraine/(accessed 2023). 
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AI-based algorithms have been exploited to create or manipulate various forms of media types and text 

passages known as “deep fakes” or “synthetic media” that can be circulated for disinformation purposes. 

Counteracting computational methods to detect “deep fakes” are under development,80 heralding the race 

between risk-posing and mitigating AI-powered strategies. However, there is no denying that currently, AI 

advances are radically transforming the ways information and disinformation are disseminated.  

 

In a recently published illustrative example, AI chatbots were successfully challenged to produce a fabricated 

article about the chemical attacks in Douma in 2018 not attributed to the Syrian government, but staged or  

orchestrated by the U.S. and other actors, uncovering a considerable breach in the ethical and security 

restriction mechanisms of these commercial platforms.81 Interestingly, in the EU law on artificial intelligence, 

just passed by the European Parliament (AI Act), “only minimum transparency obligations are proposed, in 

particular when chatbots or ‘deep fakes’ are used”82.  Artificially generated or manipulated content should 

be merely labeled as such.83 This last requirement is waved where the use is “[…]necessary for the exercise 

of the right to freedom of expression and the right to freedom of the arts and sciences guaranteed in the 

Charter of Fundamental Rights of the EU, and subject to appropriate safeguards for the rights and freedoms 

of third parties”83. More general issues and risks underlying deep fakes are not covered in the current version 

of the document.  

 

 

7. Strengthening biosecurity with AI 

 

The adoption of AI applications in the life sciences is of course not only associated with 

biosecurity threats. On the other side of the scale is the notion that AI technology can 

strengthen biosecurity by facilitating the development of vaccines and antidotes, introducing 

and improving detection methods, etc.  

The beneficial potential of AI has been for instance illustrated in the recent successful efforts to contain the 

Covid-19 pandemic. Various AI-driven algorithms have been applied for disease surveillance, patent screening 

and diagnostics, viral genome sequencing, development of drugs and vaccines, and predicting possible viral 

mutation landscapes.84-85  Several machine learning tools have been proposed to support and expand the 

existing biosecurity measures.  A few examples include: 

 early warning system for biothreats such as anthrax86 and potential high-risk Sars-CoV-2 variants;87 

 model for forensic attribution of biological attacks with the ability to predict both the nation-state-

of origin and the ancestor lab;88 

 a conceptual framework for accurate screening of commercial nucleic acid/peptide synthesis 

orders.89 

 
80 Malolan B., Parekh A. Kazi F. Explainable Deep-Fake Detection Using Visual Interpretability Methods, 3rd International 

Conference on Information and Computer Technologies (ICICT), San Jose, CA, USA, 289-293, (2020). 
81 Arvanitis L., Sadeghi M. ,Brewster J. Despite OpenAI’s Promises, the Company’s New AI Tool Produces Misinformation 

More Frequently, and More Persuasively, than its Predecessor. NewsGuard, March 2023 

https://www.newsguardtech.com/misinformation-monitor/march-2023/ (accessed 2023). 
82 Proposal for a Regulation laying down harmonised rules on artificial intelligence. COM(2021) 206 final , Brussels, April 

2021 https://artificialintelligenceact.eu/the-act/ (accessed 2023). p.3 
83 Ibid. p.70 
84 Bagabir S.A., Ibrahim N.K., Abubaker Bagabir H.A., et al. Covid-19 and Artificial Intelligence: Genome sequencing, drug 

development and vaccine discovery. J Infect Public Health, 15(8), 289-296, (2022). 
85 Arora G., Joshi J., Mandal R.S., et al. Artificial Intelligence in Surveillance, Diagnosis, Drug Discovery and Vaccine 

Development against COVID-19. Pathogens., 10(8), 1-21 (2021). 
86 Jo Y., Park S., Jung J., et al. Holographic deep learning for rapid optical screening of anthrax spores. Sci Adv., 

3(8):e1700606, 1-9, (2017). 
87 Beguir K, Skwark M.J., Fu Y., et al. Early computational detection of potential high-risk SARS-CoV-2 variants. Comput 

Biol Med., 155(106618), 1-9, (2023). 
88 Alley E.C., Turpin M., Liu A.B., et al. A machine learning toolkit for genetic engineering attribution to facilitate 

biosecurity. Nat Commun. 11(6293), 1-12, (2020). 
89 Lee Y-C.J., Cowan A., Tankard A. Peptide Toxins as Biothreats and the Potential for AI Systems to Enhance Biosecurity. 

Front. Bioeng. Biotechnol. 10, 1-6, (2022). 
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These approaches still have technical limitations and require solid proof of principle, but they represent a 

promising development in the technological field to mitigate future biothreats.  

 

AI technology also offers some applications to strengthen the framework and implementation of BWC and 

CWC regulations. For instance, the winners of the 2022 Next Generation for Biosecurity Competition90 

propose in their modular-incremental approach for the potential establishment of a BWC verification regime 

an AI-based method to support the submission of the so-called Confidence Building Measures (CBM) reports 

by the States parties. CBMs are a pivotal instrument of the BWC to ensure transparency and to improve 

international cooperation in the field of peaceful biological activities, which should contain information on 

research centers and laboratories, vaccine production facilities, national biodefence programs, infectious 

disease outbreaks, occurrences caused by toxins, etc.91  

 

However, the cumbersome collection of relevant information impeded by the lack of consistent reporting 

standards represents a substantial burden in the CBM submission process.92 An AI-based approach can be a 

mainstay in data harmonization and pave the way toward a universal CBM submission.92 Additionally AI can 

be used to analyze the CBMs to gain insights and uncover any suspicious inconsistencies or activities that 

might remain unnoticed by manual screening.92  

 

The benefits of AI technologies for the purposes relevant to the CWC were also recognized by 

the SAB in its fourth report on the developments in science and technology prior to the Review 

Conference 2018.  

As stated in the document: “Advances in fields such as remote sensing, data mining and the analysis of very 

large amounts of data, artificial intelligence, forensic science, and automated and autonomous systems can 

be utilized to increase the OPCW's capability to verify compliance”93. One of the applications in line with the 

contemplations of SAB is the project under development conducted at the Tallinn University of Technology. 

The project is part of the European Defence Fund and aims at leveraging drones, AI, and deep learning to 

identify chemical and biological weapons in real-time through on-site inspections.94 

 

In its report, SAB notices further that the integration of information and communication technologies with  

other data streams “has potential application for chemical security including recognising unexpected or 

unusual (bio)chemical change in the environment”95. Particular section in the report is devoted to AI. CWC-

relevant applications of this technology could be the identification of munitions or the detection of laboratory 

equipment from on-site photographs.96 Moreover, AI can facilitate the analysis of big data in the process of 

data mining, and recognition of “unusual features in information […], especially for threat assessment for 

counter terrorism”96. Based on these recommendations, further AI-based applications were proposed for 

routine and non-routine verification in accordance with the CWC provisions.97  

 

 
90 NTI: Winners of 2022 Next Generation for Biosecurity Competition Announced. https://www.nti.org/news/winners-

of-2022-next-generation-for-biosecurity-competition-announced/ (accessed 2023). 
91 United Nations. Office of Disarmament Affairs: Confidence Building Measures. 

https://www.un.org/disarmament/biological-weapons/confidence-building-measures/ (accessed 2023). 
92 Cropper N., Rath S., Teo R. Creating a Verification Protocol for the Biological Weapons Convention: a modular-

incremental approach. June 2022 https://www.nti.org/wp-content/uploads/2022/06/Creating-a-Verification-

Protocol_FINAL_June2022.pdf (accessed 2023). 
93 OPCW: Report of the Scientific Advisory Board on developments in science and technology for the fourth special session 

of the Conference of the States parties to review the operation of the Chemical Weapons Convention. April 2018 p. 4-5 

(accessed 2023). 
94 Oidermaa J.-J. Scientists seek quicker ways to identify chemical and biological weapons, March 2023 

https://news.err.ee/1608928193/scientists-seek-quicker-ways-to-identify-chemical-and-biological-weapons (accessed 

2023). 
95 Ibid. OPCW: Report of the Scientific Advisory Board, April 2018, p.27 
96 Ibid. p.28 
97 Kelle, A., Forman, J.E. Verifying the Prohibition of Chemical Weapons in a Digitalized World. In: Reinhold, T., Schörnig, 

N. (eds) Armament, Arms Control and Artificial Intelligence. Studies in Peace and Security. Springer, Cham., 73-89, (2022). 
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Possible applications encompass e.g. an AI-based analysis for the verification of declarations of the States 

parties submitted to the OPCW; an automated tool for effective screening of chemical compounds against 

the scheduled chemicals and their vast number of derivatives, isotopic species, isomers; recognition of early 

symptoms of exposure to toxic compounds, etc.97 Notably, a cheminformatics prototype tool called 

Nonproliferation Cheminformatics Compliance Tool (NCCT) that automates the task of assessing whether a 

chemical is part of a CW-control list, has been presented by Costanzi et al.98 The underlying algorithm is not 

based on machine learning but represents a database-management system with an embedded database 

containing generic structures that describe the entries relative to families of chemicals.98 

 

This non-exhaustive overview of possible computational applications to strengthen biosecurity at different 

levels (e.g., medical mitigation measures, forensics, legislative implementations) underscores the “double- 

sided” nature of technology, possessing both threats and virtues, depending on the purpose for which it is 

used. 

 

8.  AI Governance 

 

Nowadays, the subject of AI receives a lot of attention. In the two polarizing views, this technology is 

visualized as “revolutionizing the world” or as a “doomsday machine”. The reality lies somewhere in the grey 

area in between. AI applications in drug design, retrosynthesis planning, and synthetic biology are very 

promising but also harbor a threat of misuse. Publicly available large amounts of chemical data together with 

the open-source tools to design the respective software with machine learning architecture shape the threat 

landscape. However, current limitations in this research field, partly related to the quality of available 

datasets but also to the well-known discrepancies between theory/experiment, in vitro/in vivo situations, 

etc., do not only affect the efficiency of AI in peaceful science but also its misuse potential. Broadly speaking, 

AI is not a panacea. It cannot replace the scientist “in the loop”, who still has to evaluate the computational 

results and validate them experimentally. Albeit AI can facilitate and speed up the process of e.g. screening 

for potential toxic components (Section 3), it does not eliminate the necessity of further theoretical and 

experimental work, regarding for instance toxin delivery in vivo. This leads to the conclusion that AI alone 

might currently not be the game-changer in the process of biochemical weapon development by a nefarious 

actor.  

 

The situation can change drastically given the rapid developments in computer science in 

general and in AI and robotics technology in particular, which may obtain an extra spin from 

large investments in Industry 4.0. Once AI-powered automation in life sciences passes infancy 

and reaches the advanced stage, the current threat landscape will undergo a significant 

change.  

Moreover, the sharing of knowledge and data is subject to a constant drift toward openness and accessibility. 

The number of publications in open-source literature increases rapidly, as is the proportion of open-access 

journals worldwide.99 This trend laudably serves the promotion of transparency in research. Nevertheless, 

some recorded data can be vulnerable to misuse. This argument applies to all areas of life sciences. The 

general recommendation for raising awareness among stakeholders contained in the vast majority of 

biosecurity guidelines is also relevant in the present context. The scientific community should critically review 

all collected data regarding its possible implications for biosecurity, before disclosing the results in publicly 

available resources. The principle of awareness-raising also includes the requirement for extensive training 

in biosecurity and ethics for employees in academia and the private sector working in computational and life 

sciences. As stated by Urbina et al.: “We are not trained to consider [technology misuse potential], and it is 

not even required for machine learning research”23. 

 
98 Costanzi S., Slavick C., Abides J., et al. Supporting the fight against the proliferation of chemical weapons through 

cheminformatics. Pure Appl. Chem., 94(7), 783-798, (2022). 
99 Adoption of open access is rising – but so too are its costs, LSE, January 2018 

https://blogs.lse.ac.uk/impactofsocialsciences/2018/01/22/adoption-of-open-access-is-rising-but-so-too-are-its-costs/, 

(accessed 2023). 
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The commercial and non-profit developers of AI-based platforms for biomedical applications and research 

should also contemplate ethical and biosecurity aspects and e.g. implement biosecurity-related restrictions 

as a part of their licensing policy. Some companies have committed to “responsible AI”, the AI technology 

“that is fair and non-biased, transparent and explainable, secure and safe, privacy-proof, accountable, and to 

the benefit of mankind”100. Additionally, stakeholders from academia, civil society, industry, and media 

established a non-profit “Partnership to AI” with currently 103 members.101 One of the goals of this 

community is the development of best practices to avert possible misuse of AI and to mitigate the arising 

risks in both the near and long term. Despite that, the implemented measures are very heterogeneous. Half 

of the companies committed to the responsible AI principle have not yet undertaken any concrete steps 

toward achieving this goal.100 Moreover, open-source algorithms and tools make it possible to circumvent 

restrictions implemented in commercial products and to develop the required software “from scratch”.  

 

Also, commercial providers make some of their software openly available. Thus, the source code of AlphaFold 

was disclosed102 due to the consideration that “the entities which could be risky are likely to be a very small 

handful”73. According to the results of consulting with “more than 30 experts in bioethics and security”73, the 

benefits of making such software available under open source license “far outweigh any risks”73. Although 

this tool does have significant advantages for science, its dual-use character should not be neglected. Given 

that the number of unknowns in biochemistry remains large (e.g. unknown genome-phenotype relationships, 

proteins with unknown functions, unknown regulators of biochemical pathways, etc.), such steps require 

careful consideration and a broad open discussion in the community.  

When it comes to the governance of risk-associated technologies, first thoughts might address 

possible legislative regulations. The regulation of technology risks is widespread and often 

comes in the form of safety regulations, e.g. for the operation of dangerous facilities, or the 

handling of harmful substances. For the much more democratized AI systems which also lack 

the spatial dimension that other risk-associated technologies have, preconditions differ very 

much.  

The challenges for AI governance lie in the multifaceted character of AI technology that cannot be reduced 

to a few applications and subsequently regulated. We can therefore not present an elaborate catalog of 

recommendations for regulation, but rather give an introductory overview of problems and pitfalls. In this 

case, complexity is multidimensional: it is already difficult to define the subject matter of a possible 

regulation. Should the code be regulated or rather the way it is used? And how could risk or non-compliance 

be defined? Complexity arises, among other things, from the need for legislators to deal with a profound 

problem in mitigating risks from new and emerging technologies, namely that both legislators and users of a 

potential legal standard have to deal with ignorance. Without the empirical experience of materialized risks 

from the application of technology, it is only possible to make more or less well-founded assumptions about 

unknown or at least unclear consequences.  A common way of dealing with such uncertain risks is to develop 

standards based on the precautionary principle. According to the European Commission, “the precautionary 

principle may be invoked when a phenomenon, product or process may have a dangerous effect” that has 

been established by a scientific and objective assessment when this assessment does not allow the risk to be 

assessed with sufficient certainty to determine safety.103 However, an effective regime for applying the 

precautionary principle requires a functioning risk assessment mechanism. In other cases, such as in the “EU 

Directive on the deliberate release into the environment of genetically modified organisms”104 detailed 

provisions for an environmental risk assessment were stipulated which must be followed before a release is 

licensed.  

 

 
 
100 de Laat P.B. Companies Committed to Responsible AI: From Principles towards Implementation and Regulation?. 

Philos. Technol. 34, 1135–1193 (2021). 
101 About Us https://partnershiponai.org/about/ (accessed 2023). 
102 AlphaFold v2.3.1 https://github.com/deepmind/alphafold (accessed 2023). 
103 EU Commission’s  Communication on the precautionary principle, EU COM/2000/0001, https://eur-

lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A52000DC0001 (accessed 2023). 
104 EU Directive on the deliberate release into the environment of genetically modified organisms,  

OJ L 106,  March, 2001 https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32001L0018 (accessed 2023).  
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In the field of AI, we see yet worldwide only extremely sporadic and fragmented legislation. According to the 

analysis conducted by the AI Index Report 2023, of the 127 countries monitored 31 have passed at least one 

AI-related bill from 2016 to 2022.105 The EU law on artificial intelligence, the AI Act, is the first piece of 

legislation to regulate AI systems by establishing "harmonised rules for the placing on the market, the putting 

into service and the use of artificial intelligence ("AI systems") in the Union" (Art. 1(a)).106 At first sight, the AI 

Act appears to encompass the regulation of AI systems of all kinds of applications in all sectors (Art. 2)106 

except the military and scientific-technical activities before entry into the European market. In this capacity, 

it would either prohibit or restrict the use of the technologies in question under certain criteria to reduce the 

risk of use to an acceptable level.  

On closer inspection, the legal norm relates exclusively to AI-related risks in the area of data 

privacy.  

The positive lists in Annex III do not refer to other AI-associated risks and conversely exclude them from the 

scope of the Act. In its systematics, the law divides risks from the use of AI systems into four different classes: 

low or minimal risk, high risk, and unacceptable risk. While AI systems that are considered to produce 

unacceptable risks are being excluded from the market (Art. 5)107, high-risk systems shall become subject to 

a risk management system (Art. 9)108 In contrast to the above-mentioned directive on the release of GMOs 

there are, however, no provisions specifying methodology and criteria for risk assessment and risk 

management defined in the document. We doubt that meaningful risk classes for AI applications in life 

sciences can be defined clearly enough. Boundaries between the classes are likely to stay arbitrary instead. 

For this reason, the question of whether the AI Act can serve as a blueprint for a law that specifically regulates 

the risks to chemical and biological safety associated with AI must be critically posed.  

 

The German Federal government’s AI strategy109 supports some beneficial developments in AI technology to 

strengthen biosecurity. Thus, it advocates the necessity to expand the “computational life sciences funding 

measure focusing on AI for digital infection epidemiology”110. The document also requests a rigorous 

examination of “whether existing legislation adequately addresses the risks and requirements of AI 

applications and enables effective enforcement”111 in line with the proposal of the EU AI Act.  

 

It is not clear, how the needed single-case risk assessments could be structured and organized and who would 

be the involved stakeholders. Especially when AI systems are based upon open source software or applied 

under unclear spatial dimensions, ownership and accountability of AI systems might become ambiguous and 

hence be an obstacle for legal regulation. In fact, the unclear spatial dimensions of certain AI systems are 

another challenge, as AI can hardly be reduced to the territory of one state. Hence, global mandatory rules 

would be needed to make up a substantial legal system against AI risks. It is not necessary to describe in detail 

why it is unlikely to see the successful making of such norms. Taking a look into the attempts for DURC 

regulation might give a picture of the low chances for successful norm development. This is not to say that 

we do not believe in the need to effectively reduce risks, but instead of publishing an inadequate plan for 

regulation, we might better induce a debate about possible legal tools for risk mitigation. Although voluntary 

commitments and other forms of soft law are not the strongest shields against the misuse of technologies, 

these might hence be the most promising avenue for risk reduction in the field for the time being. 

 
105 Maslej N., Fattorini L., Brynjolfsson E., et al. The AI Index 2023 Annual Report, AI Index Steering Committee, 

Institute for Human-Centered AI, Stanford University, Stanford, CA, (2023). 
106 Ibid. Proposal for a Regulation laying down harmonised rules on artificial intelligence p.38 
107 Ibid. p.43 
108 Ibid. p.46 
109Artificial Intelligence Strategy of the German Federal Government, December 2020 https://www.ki-strategie-

deutschland.de/files/downloads/Fortschreibung_KI-Strategie_engl.pdf (accessed 2023). 
110 Ibid p.27 
111 Ibid p.30 
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, an open dialogue between policymakers and experts  rule applies also to    

The CBW network for the comprehensive strengthening of norms against chemical and 

biological weapons (CBWNet) 

The research project CBWNet is carried out jointly by the Berlin office of the Institute for Peace Research and 

Security Policy at the University of Hamburg (IFSH), the Chair for Public Law and International Law at the 

University of Gießen, the Peace Research Institute Frankfurt (PRIF) and the Carl Friedrich Weizsäcker-Centre for 

Science and Peace Research (ZNF) at the University of Hamburg. The joint project aims to identify options to 

comprehensively strengthen the norms against chemical and biological weapons (CBW).  

These norms have increasingly been challenged in recent years, inter alia by the repeated use of chemical 

weapons in Syria. The project scrutinizes the forms and consequences of norm contestations within the CBW 

prohibition regimes from an interdisciplinary perspective. This includes a comprehensive analysis of the 

normative order of the regimes as well as an investigation of the possible consequences which technological 

developments, international security dynamics or terrorist threats might yield for the CBW prohibition regimes. 

Wherever research results point to challenges for or a weakening of CBW norms, the project partners will develop 

options and proposals to uphold or strengthen these norms and to enhance their resilience. 

The joint research project is being funded by the Federal Ministry of Education and Research for four years (April 

2022 until March 2026). 

Authors information 

Dr. Anna Krin is Research Associate at the Carl Friedrich von Weizsäcker Centre for Science and Peace Research 

at Hamburg University (ZNF). She analyses recent developments and convergences in the field of life sciences 

and technology, which are of relevance in the context of the Chemical and Biological Weapons Conventions. 

Dr. Gunnar Jeremias heads the Interdisciplinary Research Group for the Analysis of Biological Risks (INFABRI) at 

the Carl Friedrich von Weizsäcker Centre for Science and Peace Research at Hamburg University (ZNF). 

Contact 

Responsible for Content §55, Abs.2 RStV: 

Dr. Alexander Kelle, IFSH 

Reinhardtstraße 7, 10117 Berlin 

E-Mail: CBWNet@ifsh.de 

www.cbwnet.org 

twitter.com/CBWNet 

ISSN (Online): 2751-4501 

 


